شبكة بحوث وتقارير ومعلومات
اليوم: ,Fri 12 Dec 2025 الساعة: 08:23 PM


اخر بحث





- [ دليل أبوظبي الامارات ] مسجد بوصالح ... أبوظبي
- [ دليل الشارقة الامارات ] شركة ماجستيك للالمنيوم والزجاج ذ.م.م ... الشارقة
- [ وسطاء عقاريين السعودية ] غالب محمد احمد الجدعاني ... القنفذه ... منطقة مكة المكرمة
- [ شركات التجارة العامه قطر ] مجموعة البتيل Al Bateel Group ... الدوحة
- [ تعرٌف على ] إل بييس كو فيما
- [ خذها قاعدة ] الحياة والموت زيت وماء، لا يندمجان بقدر ما يتجاوران، كلما ارتفع منسوب أحدهما انخفض منسوب الآخر. - بثينة العيسى
- [ مؤسسات البحرين ] كراج الفيل المغبر ... المنطقة الشمالية
- [ وسطاء عقاريين السعودية ] سامي سعد عشوي الشمري ... الرياض ... منطقة الرياض
- [ تعرٌف على ] بيت ملات
- [ وسطاء عقاريين السعودية ] علي محمد سعيد الراشدي ... المظيلف ... منطقة مكة المكرمة

نظرية فيثاغورس المبرهنة

تم النشر اليوم 12-12-2025 | نظرية فيثاغورس المبرهنة
نظرية فيثاغورس المبرهنة

المبرهنة

نظرية فيثاغورس المباشرة

وهي الشكل الأكثر شهرة لنظرية فيثاغورس « في مثلث قائم الزاوية، مربع طول الوتر يساوي مجموع مربعي طولي الضلعين المحاذيين للزاوية القائمة. » Rtriangle.svg يسار في مثلث ABC قائم الزاوية في C، أي أن [AB] هو الوتر، نضع AB c و AC b و BC a. لدينا BC^2+AC^2 AB^2, أو a^2+b^2 c^2, تمكن نظرية فيثاغورس من حساب طول أحد أضلاع مثلث قائم الزاوية بمعرفة طولي الضلعين الآخرين. مثلا إذا كان b 3 و a 4 فإن a^2+b^2 3^2+4^2 25 c^2, ومنه c 5,. أي ثلاثة أعداد صحيحة تمثل أطوال أضلاع مثلث قائم الزاوية -مثل (3، 4، 5)- تُكون ثلاثية فيثاغورس ثلاثي فيثاغورسي .

نظرية فيثاغورس العكسية

نص نظرية فيثاغورس العكسية (العبارة 47 من الجزء الأول من كتاب العناصر إقليدس لإقليدس ) « في مثلث، إذا كان مربع طول أطول ضلع يساوي مجموع مربعي طولي الضلعين الآخرين، فإن هذا المثلث قائم الزاوية. الزاوية القائمة هي الزاوية المقابلة لأطول ضلع، والضلع الأطول هو الوتر. » نظرية فيثاغورس هي خاصية مميزة للمثلث القائم الزاوية. بتعبير آخر « في مثلث ABC، إذا كان AC²+BC² AB² فإن هذا المثلث قائم الزاوية في C.».

تاريخ المبرهنة

عرفت خاصية فيثاغورس في العصور القديمة، والدلائل على ذلك ما زالت موجودة حتى الآن. يكفي مثلا أن نلاحظ الحبل ذا ثلاث عشرة عقدة الذي كان المسّاحون المصريون يستعملونه والذي نجد له صورا في عدة تصاوير للأعمال الزراعية. يسمح هذا الحبل، علاوة على قياس المسافات، بإنشاء زوايا قائمة دون الحاجة إلى جيب التمام ، إذ تسمح العقد الثلاث عشرة (والمسافات الاثنتي عشرة الفاصلة بين العقد) من إنشاء مثلث أبعاده (5 ،4 ،3)، مثلث يتضح أنه قائم الزاوية. ظل هذا الحبل أداة هندسية طيلة العصور الوسطى. أقدم تمثيل لمثلوثات فيثاغورس (مثلث قائم الزاوية وأطوال أضلاعه أعداد صحيحة طبيعية) نجده في ميغاليث الميغاليثات (2500 سنة قبل الميلاد). كما أظهرت آثار حضارة بابلية البابليين (لوحة Plimpton، حوالي سنة 1800 قبل الميلاد) أنه قبل ظهور فيثاغورس بأكثر من 1000 سنة، عرف المهندسون وجود مثلوث فيثاغورس مثلوثات فيثاغورس . لكن بين اكتشاف الخاصية «نلاحظ أن بعض المثلثات القائمة الزاوية تحقق هذه الخاصية»، تعميمها «يبدو أن كل المثلثات القائمة الزاوية تحقق هذه الخاصية» وإثباتها «كل المثلثات القائمة الزاوية (فقط) في المستوى الإقليدي تحقق هذه الخاصية» عدة أجيال. Chinese pythagoras تصغير 300بك برهان بصري لمثلث أطوال أضلاعه (3، 4، 5) في كتاب Chou Pei Suan Ching (القرن الثاني-القرن الخامس قبل الميلاد) ندرة الدلائل التاريخية تجعل من غير الممكن نسب المبرهنة إلى فيثاغورس بشكل قاطع، مع أننا على يقين بأنه صاحبها. أول برهان مكتوب نجده في كتاب العناصر إقليدس لإقليدس بالصيغة التالية « في المثلثات القائمة الزاوية، مربع طول الضلع المقابل للزاوية القائمة يساوي مجموع مربعي طولي الضلعين الآخرين. » مع صيغتها العكسية « إذا كان مربع طول ضلع في مثلث يساوي مجموع مربعي طولي الضلعين الآخرين، فإن الزاوية المحصورة بين هذين الضلعين قائمة. » ومع ذلك، فتعليقات برقلس على كتاب العناصر لإقليدس (حوالي 400 سنة بعد الميلاد) تشير إلى أن إقليدس لم يقم سوى بإعادة تدوين برهان قديم نسبه برقلس إلى فيثاغورس. إذن، يمكن أن نؤرخ البرهان على هذه الخاصية ما بين القرن الثالث والقرن السادس قبل الميلاد. يحكى أنه في تلك الفترة اكتشفت عدد لاجذري الأعداد اللاجذرية . بالفعل، يمكن بسهولة إنشاء مثلث قائم الزاوية ومتساوي الساقين طول أحدهما 1، فيكون مربع طول الوتر هو 2. برهان بسيط أيام فيثاغورس يثبت أن العدد 2 ليس مربعا لعدد جذري. يقال أن هذا الاكتشاف تم إبقاؤه سرا من طرف المدرسة الفيثاغورسية تحت تهديد بالقتل. إلى جانب هذه الاكتشافات، يبدو أن هذه المبرهنة عرفت في جمهورية الصين الشعبية الصين أيضا. نجد إشارة إلى وجود هذه المبرهنة في واحد من أقدم المؤلفات الصينية في الرياضيات، كتاب Zhoubi suanjing. هذا المؤلف، كتب على الأغلب في مملكة هان (أعظم الفترات في تاريخ الصين)، (206 قبل الميلاد، 220 سنة بعد الميلاد) يضم التقنيات المستعملة في فترة Zhou Dynasty. (القرن العاشر قبل الميلاد، 256 قبل الميلاد). نجد برهان هذه الخاصية، التي تحمل في الصين اسم مبرهنة جوجو Gougu (القاعدة والارتفاع)، في كتاب Jiuzhang suanshu (الفصول التسعة في فن الرياضيات، 100 سنة قبل الميلاد، 50 سنة بعده)، برهان مختلف كليا عن برهان إقليدس . كما نجد في الهند برهانا عدديا للخاصية يعود إلى القرن الثالث قبل الميلاد (برهان باستعمال أعداد خاصة، لكن يمكن تعميمه بسهولة). رغم أنها خاصية هندسية، إلا أنها أخذت منحى حسابيا عند البحث عن جميع مثلوثات أعداد صحيحة طبيعية تمثل أطوال أضلاع مثلث قائم الزاوية أي مثلوث فيثاغورس مثلوثات فيثاغورس . هذا البحث فتح الباب لبحث آخر البحث عن المثلوثات التي تحقق a^n + b^n c^n، بحث قاد إلى مبرهنة فيرما الأخيرة حدسية فيرما التي تم حلها سنة 1994 على يد الرياضي أندرو وايلز . توجد في الحقيقة العديد من البراهين على هذه الخاصية، مثل برهان إقليدس ، وبرهان جمهورية الصين الشعبية الصينيين ، مرورا ببرهان الهند الهنود ، وبرهان ليوناردو دا فينشي دا فينشي وحتى برهان الرئيس الأمريكي جيمس جارفيلد . كما لا يفوت ذكر الكاشي الذي عمم هذه المبرهنة على كل المثلثات في مبرهنته المعروفة باسم مبرهنة الكاشي .

براهين

لهذه المبرهنة أكبر عدد معروف من الإثباتات (كما هو الحال بالنسبة لخاصية تقابل تربيعي التقابل التربيعي ). فيما يلي بعض منها

برهان إقليدس

PPythagore2.png 300بك يسار قبل البرهنة على خاصية فيثاغورس ، يجب إثبات عبارتين. العبارة الأولى التي يجب إثباتها (العبارة 35 من الجزء الأول من كتاب العناصر) هي تساوي مساحتي متوازي أضلاع متوازيي أضلاع لهما نفس القاعدة ونفس الارتفاع « متوازي أضلاع متوازيات الأضلاع التي لها قاعدة مشتركة، ومحصورة بين نفس المستقيمين المتوازيين، لها نفس المساحة. » لنعتبر متوازي أضلاع متوازيي الأضلاع ABCD و BCFE، لديهما قاعدة مشتركة [BC]، ومحصوران بين المتوازيين (BC) و(AF)، لاحظ أن AD BC (لأنهما قاعدتا متوازي الأضلاع ABCD)، و BC EF (لأنهما قاعدتا متوازي الأضلاع BCFE)، وبالتالي AD EF. توجد ثلاثة حالات فقط (مبينة في الشكل جانبه) لموضع النقطة E بالنسبة إلى D يمكن أن توجد E على يسار D، منطبقة على D أو على يمين D. سندرس كل حالة 1. إذا كانت E على يسار D فإن [ED] مشتركة بين كل من [AD] و[EF]، ومنه نستطيع التحقق من أن المسافتين AD و EF متساويتين. لاحظ أن الضلعين [AB] و[DC] متقايسان (لأنهما قاعدتان متقابلتان في متوازي أضلاع متوازي الأضلاع ABCD)، والنقط D، E، A و F مستقيمية، الزاويتان [widehat BAE ] و[widehat CDF ] متقايستان. كنتيجة لهذا فالمثلثان BAE و CDF متقايسان، لأن لهما ضلعان متقايسان والزاويتان المحصورتان متقايستان. إذن، متوازي أضلاع متوازيي الأضلاع ABCD و CBEF ليسا سوى ترتيبين مختلفين من شبه منحرف شبه المنحرف BEDC والمثلث BAE (أو CDF). 2. إذا كانت E منطبقة على D، سنجد بطريقة مشابهة أن المثلثين BAE و CDF متقايسان، وأنه من الممكن الحصول على متوازيي الأضلاع ABCD و BCFE بإضافة المثلث BAE (أو CDF) إلى المثلث المشترك BCD. 3. إذا كانت E على يمين D، لدينا AD EF، وبإضافة DE لكل منهما نجد أن AE DF. وبطريقة مشابهة لتلك التي إستعملناها في 1 و 2، يمكن أن نبين أن المثلثين BAE و CDF، وأيضا شبهي المنحرف BADG و CGEF، متقايسان. إذن من الواضح أنه يمكن الحصول على متوازيي الأضلاع ABCD و CBEF عن طريق إضافة المثلث المشترك BCG إلى شبه منحرف شبه المنحرف BADG (أو CGEF). استبدال متوازي أضلاع بمتوازي أضلاع آخر له نفس القاعدة والارتفاع يعرف في الرياضيات باسم قص القص . هذا الأخير مهم جدا في إثبات العبارة التالية PPythagore3.png 200بك يمين « إذا كان لمتوازي أضلاع ولمثلث نفس القاعدة، ومحصورين بين مستقيمين متوازيين، فإن مساحة متوازي الأضلاع هي ضعف مساحة المثلث. » لنعتبر متوازي أضلاع ABCD، ولتكن E نقطة من نصف المستقيم (AD] ولا تنتمي إلى القطعة [AD]. نريد إثبات أن مساحة ABCD هي ضعف مساحة BEC. بعد رسم القطر [AC]، نلاحظ أن مساحة ABCD هي ضعف مساحة ABC. ولدينا مساحة ABC تساوي مساحة BEC (لأن لهم نفس القاعدة). إذن ضعف مساحة BEC هي ضعف مساحة ABC، أي ABCD. ومنه مساحة ABCD هي ضعف مساحة BEC المثلث. PEuclide.png 300بك يمين نستطيع الآن متابعة البرهان نعتبر مثلثا ABC قائم الزاوية في A. لتكن ABFG ،ACIH و BCED مربعات الأضلاع AB ،AC و BC على التوالي. لتكن J نقطة تقاطع (BC) و(AK). نريد إثبات أن مساحة BCED تساوي مجموع مساحتي ABFG و ACIH. يمكننا هذا عن طريق إثبات أن مساحة المربع ABFG تساوي مساحة المستطيل BJKD، وأن مساحة المربع ACIH تساوي مساحة المستطيل CEKJ. لإثبات المتساوية الأولى، يمكن أن نلاحظ أن المسافتين FB و BC تساويان AB و BD على التوالي. لأن الزاويتان [widehat ABF ] و[widehat CBD ] متقايستان، والزاويتان [widehat FBC ] (لاحظ أن widehat FBC widehat FBA +widehat ABC ) وwidehat ABD (لاحظ أن widehat ABD widehat ABC +widehat CBD ) متقايستان. كنتيجة، لدينا المثلثان FBC و ABD متقايسان. لاحظ أيضا أنه حسب العبارة XLI، مساحة المربع ABFG هي ضعف مساحة المثلث FBC وأن مساحة المستطيل BJKD هي ضعف مساحة المثلث ABD. بما أن المثلثين ABD و FBC متقايسان، فإن مساحة ABFG تساوي مساحة BJKD. نحصل على المتساوية الثانية بطريقة مشابهة بملاحظة أن IC و CB يساويان AC و CE على التوالي، وأن الزاوية [widehat ICB ] تقايس الزاوية [widehat ACE ]، نحصل على أن المثلثين ICB و ACE متقايسان. وعلما أن مساحة المربع ACIH هي ضعف مساحة المثلث ICB وأن مساحة المستطيل CEKJ هي ضعف مساحة ACE، وبما أن المثلثين ICB و ACE متقايسان، فإن مساحة ACIH تساوي مساحة CEKJ. وبالتالي، مساحة BCED تساوي مساحة مجموع مساحتي BJKD و CEKJ، أي مجموع مساحتي ABFG و ACIH. وتكون نظرية فيثاغورس حالة خاصة ل مبرهنة كليرو .

برهان جوجو

gougu1.svg تصغير يسار 200 بك لغز جوجو تمت إعادة صياغة مبرهنة جوجو Gougu انطلاقا من تعليقات وملاحظات الرياضي الصيني Liu Hui (القرن الثالث بعد الميلاد) على كتاب « الفصول التسعة في فن الرياضيات » (206 قبل الميلاد، 220 بعده) وعلى كتاب Zhoubi Suanjian « ظل الدوائر، كتاب في Calculus » (كتاب في علم الفلك). هذا البرهان يعتمد على مبدأ لعبة اللغز Puzzle مساحتان متساويتان بعد تقطيع وتركيب. يذكر أن إقليدس استعمل نفس المبدأ ( القص ) تقريبا. في الشكل جانبه، المثلث القائم الزاوية مرسوم بلون غامق، مربع أطول ضلع من ضلعي الزاوية القائمة رسم خارج المثلث، بينما نقوم بالعكس بالنسبة للضلعين الآخرين. المثلث الأحمر يقايس المثلث البدئي. طول أطول ضلع من ضلعي الزاوية القائمة في المثلث الأصفر يساوي طول أصغر ضلع في المثلث البدئي، وزوايا هذين المثلثين متقايسة. طول أطول ضلع من ضلعي الزاوية القائمة في المثلث الأزرق يساوي فرق طولي ضلعي الزاوية القائمة للمثلث البدئي وزواياهما متقايسة أيضا.

البرهنة باستعمال الجداء السلمي (المتجهات)

ليكن ABC مثلثا قائم الزاوية في A overrightarrow CB overrightarrow AB -overrightarrow AC overrightarrow CB ^2 (overrightarrow AB -overrightarrow AC )^2 CB^2 AB^2+AC^2-2.overrightarrow AB .overrightarrow AC بما أن ABC قائم الزاوية في A فإن overrightarrow AB .overrightarrow AC 0 ومنه BC^2 AB^2+AC^2

برهان حديث

pythagoralg.png لنعتبر مثلثا قائم الزاوية حيث قياسات أضلاعه هي b ،a و c. نقوم بنسخ المثلث ثلاث مرات بحيث يشكل كل ضلع طوله a مستقيما مع ضلع طوله b لمثلث آخر. نحصل في الأخير على مربع طول ضلعه a+b، كما في الصورة. لنحسب مساحة المربع المحدد بالأضلاع ذات الطول c. بالطبع المساحة هي c²، وتساوي أيضا فرق مساحة المربع الكبير ذو الضلع a+b ومجموع مساحات المثلثات الأربع. مساحة المربع الكبير هي ²(a+b) لأن طول ضلعه هو a+b. ومجموع مساحات المثلثات هي أربع مرات مساحة مثلث واحد، أي 4(ab/2)، إذن الفرق هو (a+b)²-4(ab/2) بالتبسيط a²+b²+2ab-2ab أي a²+b². بهذا نكون قد برهنا على أن مساحة المربع ذو الضلع c تساوي a²+b²، أي a²+b² c². Pythagorean proof.svg توجد طرق عديدة أخرى لإثبات مبرهنة فيثاغورس ، حتى الرئيس الأمريكي الواحد والعشرون جيمس جارفيلد ، برهن بطريقة قريبة من الطريقة السابقة، على مبرهنة فيثاغورس .

أشكال أخرى للمبرهنة

استلزامها المضاد للعكس

نص الاستلزام المضاد للعكس « إذا كانت أطوال أضلاع مثلث ABC تحقق BC^2 e AB^2+AC^2,! فإن المثلث ABC ليس قائما في النقطة A. » رغم أن استلزام مضاد للعكس الاستلزام المضاد للعكس يكافئ منطقيا مبرهنة المبرهنة المباشرة، إلا أن استعماليهما مختلفان فنظرية فيثاغورس المباشرة تستعمل لحساب طول ضلع مثلث قائم الزاوية بدلالة طولي الضلعين الآخرين، في حين أن استلزامها المضاد للعكس يستعمل لإثبات كون مثلث (قياسات أضلاعه معلومة) ليس قائم الزاوية.

الاستلزام المضاد للعكس للخاصية العكسية

يقول ما يلي « إذا كان المثلث ABC ليس قائم الزاوية في A فإن BC^2 e AB^2+AC^2,! »

تعميمات

تعميم على أشكال هندسية أخرى غير المربعات

lunules.png تصغير يسار مبرهنة الهلالين عمم إقليدس مبرهنة فيثاغورس في كتابه العناصر (العبارة 31، الجزء VI من كتاب العناصر) « في المثلثات القائمة الزاوية، مساحة شكل مرسوم على الوتر، يساوي مجموع مساحتي الشكلين تشابه المشابهين له المرسومين على ضلعي الزاوية القائمة. » بتعبير آخر « إذا أنشأنا أشكالا تشابه متشابهة على أضلاع مثلث قائم الزاوية، فإن مساحتي الشكلين الصغيرين تساوي مساحة الشكل الكبير. » هذه الخاصية تسمح لنا بالبرهنة على أن مساحة مثلث تساوي مجموع مساحتي الهلالين المرسومين على ضلعي الزاوية القائمة مبرهنة الهلالين .

قانون جيب التمام

مفصلة قانون جيب التمام
a^2+b^2-2abcos heta c^2, ,
حيث تمثل خ¸ الزاوية المحصورة بين الضلعين a و b.

استعمالاتها

  • تسمح نظرية فيثاغورس بحساب المسافة بين نقطتين في معلم متعامد بدلالة إحداثيات ديكارتية إحداثياتهما الديكارتية ، إذا كانت A(x_a, y_a) وB(x_b, y_b) نقطتان من مستوي إقليدي المستوي الإقليدي ، فإن المسافة بينهما هي
  • sqrt (x_b-x_a)^2 + (y_b-y_a)^2 إذا كانت (x_b, y_a) إحداثيتا نقطة C في نفس معلم المعلم ، فإن المثلث ACB قائم الزاوية في C. المسافتان CA و CB معلومتان CA x_b - x_a CB y_b - y_a بينما تمثل المسافة AB طول وتر المثلث ACB.
  • بشكل عام، في فضاء إقليدي (أو فضاء تآلفي إقليدي )، المسافة من (x_1, dots, x_k) إلى (y_1,dots, y_n) تساوي
  • sqrt sum_ k 1 ^ k n (x_k-y_k)^2
    • يمكن أن نعتبر مبرهنة Parseval تعميما لنظرية فيثاغورس في فضاء الجداء الداخلي .
    • تعمم نظرية فيثاغورس على تبسيطة التبسيطات ذات الأبعاد الكبيرة. إذا كان رباعي أوجه لرباعي أوجه ركن قائم (ركن من مكعب )، فإن مربع مساحة الوجه المقابل للركن، يساوي مجموع مربعات مساحات الأوجه الثلاثة الأخرى. تعرف هذه المبرهنة أيضا باسم مبرهنة Gua .
    معلومات نظرية الاسم صورة Pythagorean.svg تعليق الصيغة الهندسية لنظرية فيثاغورس. مجموع مساحة المربعين الواقعين على الضلعين a و b يساوي مساحة المربع الواقع على الضلع c النوع تاريخ الصيغة جزء من سميت بأسم صاحبها في الرياضيات ، نظرية فيثاغورس كتاب الكون الحي، بين الفيزياء والميتافيزياء، د. جواد بشارة] أو مبرهنة فيثاغورس إنج Pythagorean theor هي نظرية في هندسة إقليدية الهندسة الإقليدية ، تنص على أنه في أي مثلث قائم مثلث قائم الزاوية يكون مجموع مربع طول الضلعين المحاذيين للزاوية القائمة مساويا لمربع طول وتر المثلث القائم الوتر . سميت هذه مبرهنة المبرهنة هكذا نسبة إلى العالم فيثاغورس الذي كان رياضي ا و فيلسوف ا و عالم فلك في يونان اليونان القديمة].

    شاركنا رأيك