شبكة بحوث وتقارير ومعلومات
اليوم: ,Mon 15 Dec 2025 الساعة: 04:33 PM


اخر بحث





- تعرٌف على ... عماد محمود السعداوي | مشاهير
- [ سيارات السعودية ] مركز البركة لخدمة السيارات
- ماذا يعني التصاق القلفة بالحشفة للمولود الجديد قبل الختان ؟ | الموسوعة الطبية
- [ مؤسسات البحرين ] مروان ابراهيم محمد احمد سيف. ... المحرق
- عندي طفله عمرها 6 اشهر عندها اسهال وحمى شديدة فجاة شنو ممكن نكدر نعطيها | الموسوعة الطبية
- [ تعرٌف على ] أنغراد توموس
- [ تاريخ الدول ] تاريخ بريطانيا القديم
- [ وسطاء عقاريين السعودية ] مكتب يسر البركة للعقار ... جدة ... منطقة مكة المكرمة
- [ سياحة وترفيه الامارات ] سينما الحمراء ... الشارقة
- [ دليل الشارقة الامارات ] الايطالية للذهب م.م.ح ... الشارقة

[ تعرٌف على ] زرنيخ

تم النشر اليوم 15-12-2025 | [ تعرٌف على ] زرنيخ
[ تعرٌف على ] زرنيخ تم النشر اليوم [dadate] | زرنيخ

الوفرة الطبيعية

صورة مكبَّرة لبلورةٍ من الزرنيخ من عيّنةٍ عُثرَ عليها في منطقة كلادنو في التشيك. على العموم فإنّ عنصر الزرنيخ قليلُ الانتشار في غلاف الأرض الصخري؛ وهو من العناصر المحبّة للسيليكات حسب تصنيف غولدشميت، حيث يكون تركيزه أكبر بالقرب من سطح الأرض من باطنها. يكون تركيز الزرنيخ في القشرة الأرضية قريباً من وفرة عنصرَي اليورانيوم والجرمانيوم؛ وذلك بمقدار حوالي 1.5 جزء في المليون (0.00015%) وسطياً من تركيبها، وهو بذلك يقع في المجال الأوسط بين العناصر الكيميائية من حيث ترتيب الوفرة فيها. يمكن أن يُعثَر على الزرنيخ في الطبيعة نتيجةً للثورات البركانية التي تنشر أكسيد الزرنيخ الثلاثي على شكل هباءٍ جوّي؛ ولكن لا تتجاوز تراكيز الزرنيخ الوسطية في الهواء مقدار 3 نانوغرام/م3 في الجوّ، و100 مغ/كغ في التربة، و10 ميكروغرام/الليتر في الماء العذب. عيّنة كبيرة نسبياً من الزرنيخ العنصري الطبيعي عثر عليها في جبال هارز في ألمانيا. يمكن أن يُعثَر على الزرنيخ بشكله العنصري الحرّ في الطبيعة، فهو بذلك من المعادن وفق تصنيف الجمعية الدولية للمعادن؛ لكن ذلك نادر الحدوث ومحدود الانتشار، إذ حتى سنة 2011 سُجّل فقط 330 موقعاً جغرافياً حاوياً على الزرنيخ العنصري الحرّ. بشكلٍ أكثر شيوعاً يدخل الزرنيخ في تركيب عددٍ معتبَرٍ من المعادن، وذلك غالباً على شكل معادن الزرنيخيد أو معادن الزرنيخات؛ وكذلك بشكلٍ كبيرٍ مع معادن الكبريتيدات ومعادن أملاح السلفو. على العموم هناك حوالي 565 معدناً معروفاً للزرنيخ. من الأمثلة النمطية لمعادن الزرنيخيدات كلٌّ من معادن لولينغيت FeAs2 وألغودونيت Cu6As ودوميكيت Cu3As، وسكوتيروديت CoAs3. تعدّ المعادن من النمط MAsS واسعة الانتشار، مثل معادن أرسينوبيريت FeAsS وكوبالتيت CoAsS وغيرسدورفيت NiAsS. من الأمثلة الأخرى الأخرى المعروفة لمعادن الزرنيخ كلٌّ من رهج الغار As4S4 والرهج الأصفر As2S3، وأرسينوليت As4O6 وإينارغيت Cu2CuAsS4 وبروستيت Ag3AsS3 وراملسبيرغيت NiAs2 وسافلوريت CoAs2 وسبيريليت PtAs2. غالباً ما توجد معادن الزرنيخات بالترافق مع معادن الفوسفات. يوجد هناك أيضاً عددٌ من أشكال عضوية مختلفة للزرنيخ في الطبيعة.

المخاطر

المقالة الرئيسة: تسمم بالزرنيخ .

الدور الحيوي

المقالة الرئيسة: كيمياء الزرنيخ الحيوية لا تزال الأهمّية الحيوية للزرنيخ بالنسبة للإنسان غير معروفة تماماً؛ كما لا تعرف أعراض في حالة عوزه عند البشر. يُعثَر على الزرنيخ طبيعياً في الجسم، ولكن بآثارٍ نزرة؛ إذ يحوي الدمّ نسبةً تصل إلى 8 جزء في البليون (ppb )، ويتراوح التركيز في العظام بين 0.1 إلى 1.5 جزء في المليون (ppm )، وفي الشعر يصل إلى حوالي 1 جزء في المليون. يبلغ مجموع كمّية الزرنيخ طبيعياً في جسم إنسان بالغ حوالي 7 ميليغرام. تشير بعض الدلائل إلى أهمّية وجود آثار من الزرنيخ عند بعض أنواع الطيور (الدجاج) وعند بعض أنواع الثديّيات (الجرذان والهامستر والماعز)؛ إلّا أنّ الدور الوظيفي الحيوي لا يزال غير معروفاً. يدخل الزرنيخ في تركيب بعض الأنواع في الكيمياء العضوية الحيوية، مثلما هو الحال مع الليبيدات، أو السكّريدات أو الغليكوليبيدات، وكذلك مركبا أرسينوبيتاين وأرسينوكولين، بالإضافة إلى الريبوزات الزرنيخية المستبدلة المتنوّعة. تكثر هذه المركّبات الزرنيخية العضوية في الأحياء المائية، وخاصّةً في الطحالب والإسفنجيات وثنائيات الصدفة، وفي بعض أنواع الأسماك. لذلك تعدّ المأكولات البحرية المصدر الرئيسي للتعرّض إلى الزرنيخ العضوي مثل الليبيدات والسكّريدات الزرنيخية، حيث يكون الجسم قادراً على استقلابها. علم الوراثة تشمل التغيّرات الحيوية التي يسبّبها التركيز المرتفع من الزرنيخ عند الإنسان كلاً من مثيلة الدنا وتحوير الهستونات وتدخّل الحمض النووي الريبوزي (تدخّل الرنا). هناك صلةُ وصلٍ بين الزرنيخ وبين التغيّرات التخلّقية الجينية المتعاقبة، وهي التغيّرات الوراثية في التعبيرات الجينية الحاصلة من غير حدوث تغيّرات في تسلسل الحمض النووي الريبوزي منقوص الأكسجين (تسلسل الدنا). يؤدّي وجود مستويات مؤذيةٍ من الزرنيخ إلى حدوثٍ تغييرٍ معتبرٍ في درجة مثيلة الحمض النووي الريبوزي منقوص الأكسجين للجينات الكابتة للورم p16 و p53؛ ممّا يزيد من خطورة التسرطن. دُرسَت هذه الظواهر التخلّقية الجينية المتعاقبة «في المختبر» (خارج الحيوية) باستخدام خلايا كِلية بشرية، وكذلك في «في الجسم الحي» باستخدام خلايا كبد جرذ وخلايا دم بيضاء طرفية عند البشر. الاستقلاب أرسينوبيتاين عند دخول الزرنيخ ومركّباته اللاعضوية في السلسلة الغذائية فإنّها تتعرّض بشكلٍ مستمرٍّ للاستقلاب بعملية المثيلة. فعلى سبيل المثال، يقوم أحد أنواع الفطور [ملاحظة 1] بإنتاج كمّيّاتٍ معتبَرةٍ من ثلاثي ميثيل الزرنيخ عند وجود الزرنيخ اللاعضوي. يُعثَر على المركّب العضوي الزرنيخي الحيوي أرسينوبيتاين في بعض الأحياء البحرية مثل الأسماك والطحالب، وكذلك في بعض أنواع الفطور بتراكيز متفاوتة؛ وهي مادّة ذات تأثيرٍ سمّيٍّ منخفضٍ نسبياً. البكتريا تقوم بعض الأنواع من البكتريا بتأمين مصدرٍ للطاقة في غياب الأكسجين بواسطة اختزال الزرنيخات إلى زرنيخيت. في حين أنّ أنواعاً أخرى من البكتريا تستخدم الزرنيخيت وقوداً، وتؤكسده إلى زرنيخات. في سنة 2008 اكتُشِف نوعٌ من البكتريا قادرٌ على استخدام نسخةٍ مُحوّرةٍ من التركيب الضوئي في غياب الأكسجين يُستخدَم فيها الزرنيخيت مانحاً للإلكترونات، ويتأكسد بذلك إلى الزرنيخات. تتضمّن هذه العمليات استخدام إنزيمات تدعى مختزلة الزرنيخات. ‏ [ملاحظة 2] في سنة 2011 افترضت دراسةٌ أنّ بعض أنواع البكتريا [ملاحظة 3] قادرٌ على النموّ بغياب الفوسفور باستخدامه للزرنيخ بدلاً منه، وذلك اعتماداً على أنّ بنية الزرنيخات مشابهةٌ لبنية الفوسفات؛ لكنّ تلك الفرضية جوبهت بالانتقاد والتفنيد من عدّة مجموعات بحثٍ مستقلّة.

الأثر البيئي

يمكن أن يعثَر على آثارٍ من الزرنيخ في الماء والغذاء والتربة والهواء. هناك مصادرٌ طبيعية تؤدّي إلى التعرّض إلى الزرنيخ اللاعضوي مثل الرماد البركاني، والتجوية الطبيعية للمعادن والخامات، بالإضافة إلى المياه الجوفية في بعض المناطق. من جهةٍ أخرى، يمكن أن يكون وجود مركّبات الزرنيخ العضوية مؤشّراً على حدوث تلوّث صناعي. مياه الشرب تعدّ مسألة تلوّث المياه الجوفية بالزرنيخ إحدى القضايا البيئية الرئيسية التي يسبّبها هذا العنصر الكيميائي؛ وقد سُجّلت عدّة حالات تلوّث في أماكن مختلفة من العالم. وضعت منظّمة الصحّة العالمية معياراً يضبط الحد الأعلى الموصى به من الزرنيخ في مياه الشرب بمقدار 10 جزء في البليون (ppb)؛ إلّا أنّ حوالي 137 مليون نسمة في العالم يشربون مياهً حاويةً على مستويات أعلى من ذلك؛ منهم 57 مليون نسمة يشربون ماءً يفوق فيه تركيز الزرنيخ حدّ 50 جزء في البليون. أدّى التلوّث الشديد للمياه الجوفية بالزرنيخ في حوض البنغال إلى انتشار حالات من التسممّ بالزرنيخ واسعة النطاق في بنغلاديش، وباكستان. تنتشر حالات تلوّث المياه الجوفية بالزرنيخ أيضاً في بلدان جنوب شرق آسيا مثل فيتنام وكمبوديا، وكذلك في تايلاند؛ حيث تساعد الظروف الجيولوجية طبيعياً في ارتفاع محتوى الزرنيخ مثلاً في نهر تشاو فرايا. في الولايات المتحدة الأمريكية يُعثَر على الزرنيخ في المياه الجوفية غالباً في جنوب الغرب؛ كما يُعثَر عليه أيضاً في مناطق من الولايات الشمالية/الشمالية الشرقية. كما يوجد الملايين من الآبار ذات الملكية الخاصة، والتي لم تخضع لتحليل كيميائي، والتي قد يكون البعض منها حاوياً على مستوياتٍ من الزرنيخ تفوق الحدّ الموصى به. في كندا قام الباحثون في هيئة المسح الجيولوجي بوضع نماذج لتمثيل مقدار التفاوت في التعرّض للزرنيخ الطبيعي في مقاطعة نيو برونزويك. كما توجد أيضاً مستوياتٌ مرتفعةٌ من الزرنيخ في المياه الجوفية في تشيلي. الآثار الصحية وجدت دراسة أنّ التعرّض لمستوياتٍ منخفضةٍ من الزرنيخ تراوح 100 جزء في البليون يؤدي إلى التسبّب بتضعيف الردّ المناعي الأوّلي لفيروس إنفلونزا الخنازير في بحثٍ أجري على الفئران، ممّا دفع بالاقتراح إلى أنّ هذا الأمر قد ينسحب على البشر.[100] كما وجدت دراسات أخرى علاقةً بين مستويات الزرنيخ المرتفعة وبين ضعف ردّ الفعل المناعي تجاه الإصابة بأمراضٍ مختلفة.[101][102] هناك عدّة دراسات تربط بين محتوى الزرنيخ في مياه الشرب وبين أنواع مختلفة من السرطان. فقد وجدت علاقة بين سرطان الجلد والتعرّض للزرنيخ في ولاية ويسكونسن الأمريكية، حتّى في مستوياتٍ أدنى من معيار 10 جزء في البليون.[103] كما بيّنت دراسات أجريت في تشيلي على وجود دلائل طبّية تشير إلى العلاقة بين التعرّض المزمن للزرنيخ وبين نشوء عدّة أشكال من السرطان، حيث تبدأ تلك المخاطر بالظهور عند تراكيز أقلّ من 50 جزء في البليون؛[104] وخاصّةً عند وجود عوامل خطر أخرى مثل تدخين السجائر؛ حيث أنّ الزرنيخ هو مكوّن من مكوّنات دخان التبغ أيضاً.[105] اقترحت عدّة دراسات أجريت على التعرّض للزرنيخ اللاعضوي إلى وجود خطرٍ صغيرٍ، ولكنّه قابل للقياس، لاحتمالية الإصابة بسرطان المثانة عند تركيز 10 جزء في البليون.[106] في حين بيّنت دراسة في تايوان أنّ الزيادة المعتبرة في وفيات السرطان جرّاء التعرض للزرنيخ تحدث عند مستويات تفوق 150 جزء في البليون.[107] الإزالة والتقليل من المخاطر استُخدمَت عدّة وسائل فيزيائية وكيميائية وحيوية لإزالة أو تقليل نسبة الزرنيخ المنحلّ في المياه الجوفية.[108][109] يمكن إزالة الزرنيخ المنحلّ في مياه الشرب بالترسيب المشترك مع أكاسيد الحديد؛[110] حيث أظهرت بيانات مختلفة أنّ عمليات التطويف بوجود أكاسيد الحديد تزيل الزرنيخ بنجاعةٍ تفوق 90%.[111][112][113] تعدّ المعالجة في عمودٍ معبّأٍ بأكسيد هيدروكسيد الحديد الثلاثي إحدى العمليات القياسية في معالجة المياه في عدّة دول. يؤدّي الحفر الأعمق للآبار من أجل الوصول إلى مياه أنقى إحدى الطرق العمليّة والفعّالة لتجنّب تلوّث المياه الجوفية بالزرنيخ، إذ تتهيّأ الظروف بذلك لحدوث عملية «امتزاز» للزرنيخ على سطوح الصخور الرسوبية العميقة، ممّا يؤدي إلى التقليل من تركيزه.[114] من جهة أخرى، يمكن استخدام طرق حيوية بالاستعانة بالبكتريا المؤكسدة للزرنيخ،[115] التي تؤكسد الزرنيخيت إلى زرنيخات.[116] هناك نوع من النباتات [ملاحظة 4] قادرٌ على امتصاص الزرنيخ من التربة وتجميعه في أوراقه، ممّا دفع بالاقتراح إلى استخدامه في المعالجة النباتية للتخلّص من الملوّثات.[117] كما وُجدَ نوعٌ من الطحالب حقيقة النواة [ملاحظة 5] ضمن المسطّحات المائية في متنزه يلوستون الوطني، كانت قادرةً على تحمّل مستوياتٍ مرتفعةٍ من الزرنيخ اللاعضوي، كما أنها تقوم أيضاً بأكسدته وتحويله إلى الشكل العضوي، ممّا يقلّل الخطورة؛ ويُدرس أيضاً إمكانية استخدامها في تنقية المياه.[118] التحول التأكسدي/الاختزالي للزرنيخ في الأوساط المائية يمكن أن يوجد الزرنيخ في الطبيعة في عدّة حالات أكسدة (−3 و 0 و +3 و +5)، ولكن في المياه الطبيعية يوجد غالباً على شكل أملاح لاعضوية على هيئة أنيونات أكسجينية من الزرنيخيت (زرنيخ ثلاثي التكافؤ) أو الزرنيخات (زرنيخ خماسي التكافؤ). هناك أنواعٌ من البكتريا تساعد على التحوّل التأكسدي الاختزالي للزرنيخ؛ إذ توجد أنواعٌ من البكتريا المختزلة التي تقوم باختزال الزرنيخ الخماسي إلى الثلاثي؛[119] بالمقابل توجد هناك بكتريا كيميائية التغذية قادرةٌ على تحويل الزرنيخ الثلاثي إلى خماسي، وفي أثناء تلك العملية تقوم باختزال الأكسجين أو النترات، وتقوم باستخدام الطاقة المستحصلة لتثبيت الكربون.[120] يتميّز الزرنيخ بكونه حساساً لعمليات الانتقال في الأوساط المائية وذلك حسب درجة حموضة الوسط (pH) وكذلك حسب جهد اختزال الأنواع الكيميائية الزرنيخية الموجودة. إنّ قيم pH المرتفعة تساعد على تحرير أيونات الزرنيخ إلى الوسط المائي، وخاصّةً من معادن الكبريتيدات الزرنيخية.[121] تؤثّر تفاعلات الأكسدة والاختزال على انتقال الزرنيخ؛[122][123] إذ أنّ الزرنيخيت هو الشكل الأكثر استقراراً في الأوساط المختزلة، في حين أنّ الزرنيخات، والتي هي أقلّ قابلية للحركة وللانتقال من الزرنيخيت، تكون سائدةً في الأوساط المؤكسدة عند قيم pH معتدلة. تكون الأوساط المختزلة غنيّةً بالمواد العضوية، ممّا يزيد من نشاط البكتريا المختزلة للزرنيخ التي تحوّل إلى الزرنيخيت المنحلّ، ممّا يساهم في ارتفاع مستويات الزرنيخ في المياه الجوفية.[124] تَستقرِئُ حسابات التوازن الديناميكية الحرارية أنّ تركيز الزرنيخ الخماسي ينبغي أن يكون أكبر من الزرنيخ الثلاثي في أغلب الأوساط ما عدا شديدة الاختزال منها، والتي يحدث فيها مثلاً اختزالٌ لأنيون الكبريتات؛ من جهةٍ أخرى فإنّ تفاعلات الأكسدة-اختزال اللاأحيائية بطيئة. حيث أنّ أكسدة الزرنيخ الثلاثي بواسطة الأكسجين المنحلّ في الماء هو تفاعلٌ بطيء؛[125] فقد وجدت دراسة أنّ نسب (As(V)/As(III تكون ثابتةً في المحاليل الشحيحة بالأكسجين إلى مدّة ثلاثة أسابيع، في حين أنّ التغيّر التدريجي حصل على فتراتٍ زمنيةٍ أطول؛[126] كما تتعلّق حدوث قابلية التغيّر في العيّنة حسب نوعها.[127] حفظ الخشب تعدّ مسألة استخدام مركّبات الزرنيخ في حفظ الخشب من الشؤون ذات الخطر البيئي في بعض الدول،[128] وخاصّةً الولايات المتحدة الأمريكية؛ حيث استُخدِم سنة 2007 حوالي 50% من كمّيّة الزرنيخ المنتجة لذلك الغرض، وذلك في تحضير مركّب زرنيخات النحاس الكروماتية. [129] تنشأ الخطورة من احتمالية رشح مركّبات الزرنيخ إلى التربة، أو عند حرق ألواح الخشب القديمة المعالَجة بالزرنيخ؛[130] رغم أنّ بعض اللوائح الناظمة في بعض الولايات الأمريكية تعتمد على دراساتٍ لا تجد علاقةً بين التخلّص من تلك الألواح وبين تلوّث المياه الجوفية بالزرنيخ.[131][132] على العموم؛ هناك نزعةٌ إلى استخدام بدائل أكثر أماناً خالية من الزرنيخ، مثل مركّبات البورات أو سيبروكونازول أو بروبيكونازول، بالإضافة إلى مركّبات نحاس عضوية أخرى.[133]

النظائر

المقالة الرئيسة: نظائر الزرنيخ الزرنيخ عنصرٌ أحاديُّ النظير، أي لا يوجد في الطبيعة منه إلّا نظيرٌ واحدٌ فقط، وهو النظير المستقرّ زرنيخ-75 75As؛ كما لا توجد نظائر مشعّة طبيعية له، بالتالي فهو أيضاً عنصرٌ أحاديُّ النويدة. تتكوّن نواة الزرنيخ الطبيعي من 33 بروتون و42 نيوترون، وهي ذات لفٍّ مغزليٍ مقداره 3/2. بالمقابل، فإنّه وفق بيانات سنة 2003 يوجد حوالي 33 نظيرٌ مشعٌّ مُصطنَعٌ من الزرنيخ، والتي تتراوح أعدادها الكتلية بين 60 إلى 92 وحدة كتلٍ ذرّية، وأكثرها استقراراً النظير زرنيخ-73 73As، والذي يبلغ عمر النصف لديه مقدار 80.30 يوم. أمّا باقي النظائر المشعّة للزرنيخ فلها أعمار نصف أقلّ من يومٍ واحد، ما عدا النظير زرنيخ-71 71As (عمر النصف 65.30 ساعة) والنظير زرنيخ-72 72As (عمر النصف 26.0 ساعة) والنظير زرنيخ-74 74As (عمر النصف 17.77 يوم) والنظير زرنيخ-76 76As (عمر النصف 1.0942 يوم) والنظير زرنيخ-77 77As (عمر النصف 38.83 ساعة). تضمحلُّ النظائر الأخفّ من النظير المستقرّ زرنيخ-75 75As باضمحلال بيتّا من النمط +β؛ أمّا الأثقل فتضمحلّ وفق النمط −β (مع وجود بعض الاستثناءات). يوجد هنالك عشرة مصاوغات نوويّة موصوفة على الأقلّ للزرنيخ، وتتراوح أعدادها الكتلية بين 66 إلى 84، وأكثرها استقراراً هو 68mAs بعمر نصف مقداره 111ثانية.

الخواص الفيزيائية

البنية البلّورية للزرنيخ الرمادي، وهي نفسها التي تتّبعُها بلّورات عنصر الإثمد ومعدن الستيبارسين. يوجد الزرنيخ طبيعياً على عدّة أشكال تختلف فيما بينها ببنيتها البلّورية، تعرف هذه الظاهرة باسم التآصل، ومن بين تلك الأشكال كلٌّ من الزرنيخ الرمادي والأصفر والأسود، ويعدّ الرمادي أكثرها شيوعاً. يتمتّع الزرنيخ الرمادي بسماتٍ قريبةٍ من سمات الفلزّات، وتظهر هذه السِّمَةُ فيه بشكلٍ واضحٍ وأكبر من باقي عناصر المجموعة الخامسة. على الرغم من ثباتيّته في الهواء الجافّ، إلّا أنّ الزرنيخ الرمادي يفقد لمعانه ويشكّل طبقةً سطحيةً ذات لون برونزي-ذهبي عند التعرّض للرطوبة الجوّية، والتي تؤول بالنهاية وتتحوّل إلى طبقةٍ سوداء. تتّبعُ بلّورات الزرنيخ الرمادي (زرنيخ من النمط ألفا α-As) الزمرة الفراغية R3m (رقم 166)، وهي ذات بنية مزدوجة الطبقات ومؤلّفة من حلقات سداسية متداخلة ومنفوشة، تأخذ شكل الكرسي في ترتيبها. يؤدّي ضعف الترابط بين تلك الطبقات إلى تقصّف وهشاشة الزرنيخ، لذلك فإنّ لهذا العنصر صلادة منخفضة نسبياً وفق مقياس موس (قيمتها 3.5). من جهةٍ أخرى، يؤدّي تقارب الذرّات من بعضها نتيجة التداخل إلى تشكّل نموذجٍ ذرّيٍ مضغوط على شكل ثماني سطوح غير منتظم (مُشوَّه)، بحيث تكون فيه ثلاث ذرّات واقعة في نفس الطبقة المزدوجة أقرب من بعضها من الثلاث التالية. تعطي هذه التعبئة المتراصّة النسبية كثافةً مرتفعة للزرنيخ، والتي تبلغ 5.73غ/سم3. يكون الشكل الأصفر من الزرنيخ طريّاً وشمعيّاً، وهو شبيه نوعاً ما إلى رباعي الفوسفور P4؛ إذ إنّ كلتا البُنيَتين ذاتُ ترتيبٍ على شكل رباعي سطوح، ترتبط فيه الذرّات مع بعضها برابطة أحادية. يؤدّي هذا الترتيب الذرّي As4 إلى عدم الاستقرار، وهو شكل قليل الكثافة (تبلغ 1.97غ/سم3. ) وقابل للتطاير، وهو الأكثر سمّيّة بين متآصلات الزرنيخ. يُستحصَل على الطور الصلب الأصفر لهذا العنصر عند التبريد السريع لبخار الزرنيخ، وهو سرعان ما يتحوّل إلى الشكل الرمادي عند التعرّض للضوء. يشبه الزرنيخ الأسود من حيث الخواص الفوسفور الأسود؛ وهو هشٌّ وموصلٌ رديءٌ للكهرباء، وتقع قيمة فجوة النطاق للشكل اللابلوري عند مجال بين 1.2–1.4إلكترون فولت. عند درجات حرارة أعلى من 270 °س يتحوّل الزرنيخ الأسود إلى الرمادي. يوجد هناك نمطان من المتآصل الأسود للزرنيخ، أحدهما لابلّوري، ويتشكّل من تبريد بخار الزرنيخ عند درجات حرارة بين 100–220 °س، ويوصف بالزجاجي، وتتراوح كثافته بين 4.7 إلى 5.1 غ/سم3. أمّا عند تسخين الزرنيخ الأسود الزجاجي اللابلّوري بوجود بخار الزئبق عند درجات حرارة بين 100 إلى 175 °س فيتحوّل إلى شكلٍ بلّوري ذو نظام معيني قائم. يُبدي الزرنيخ وبعض مركّباته خاصّية التسامي جرّاء التسخين عند الضغط الجوي، حيث يتحوّل بشكلٍ مباشرٍ إلى الطور الغازي من غير المرور بالحالة السائلة عند درجة حرارة تتراوح بين 613-615 °س. لبخار الزرنيخ لون أصفر ليموني، ويكون تركيبه لدرجات حرارة تصل إلى 800 °س من جزيئات As4، أمّا عند درجات حرارة أعلى من 1700 °س فيعثر عليه على شكل جزيء ثنائي الذرّة من As2. حُدّدت النقطة الثلاثية للزرنيخ عند ضغط مقداره 3.63 ميغاباسكال وعند درجة حرارة مقدارها 820 °س.

شرح مبسط

الزِرْنِيْخ هو عنصر كيميائي رمزه As وعدده الذرّي 33؛ ويقع ضمن عناصر الدورة الرابعة وفي المجموعة الخامسة عشر (المجموعة الخامسة وفق ترقيم المجموعات الرئيسية) في الجدول الدوري، وهو يقع في المرتبة الثالثة في مجموعة النتروجين. يصنّف الزرنيخ كيميائياً ضمن أشباه الفلزّات؛ وتوجد منه متآصلات (أشكال) مختلفة في الطبيعة، ولكن الشكل الأكثر شيوعاً وأهميّةً بالنسبة للصناعة هو الشكل الرمادي. يندر العثور على الزرنيخ على العموم بشكله العنصري الطبيعي؛ ولكنّه بالمقابل يدخل في تركيب العديد من المعادن، وذلك غالباً مع الكبريت في معادن الكبريتيدات.

شاركنا رأيك