شبكة بحوث وتقارير ومعلومات
اخر المشاهدات
مواقعنا
اخر بحث
الرئيسية الدليل خارطة الموقع
غسيل سجاد رخيص كفالة يومين – نغطي الكويت
[ تعرٌف على ] قائمة تكاملات الدوال الزائدية تم النشر اليوم [dadate] | قائمة تكاملات الدوال الزائدية

التكاملات الأخرى

تكاملات دوال الظل، وظل التمام، والقاطع، وقاطع التمام الزائدية ∫ tanh ⁡ x d x = ln ⁡ cosh ⁡ x + C {\displaystyle \int \tanh x\,dx=\ln \cosh x+C} ∫ tanh 2 ⁡ a x d x = x − tanh ⁡ a x a + C {\displaystyle \int \tanh ^{2}ax\,dx=x-{\frac {\tanh ax}{a}}+C} ∫ tanh n ⁡ a x d x = − 1 a ( n − 1 ) tanh n − 1 ⁡ a x + ∫ tanh n − 2 ⁡ a x d x (for n ≠ 1 ) {\displaystyle \int \tanh ^{n}ax\,dx=-{\frac {1}{a(n-1)}}\tanh ^{n-1}ax+\int \tanh ^{n-2}ax\,dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}} ∫ coth ⁡ x d x = ln ⁡ | sinh ⁡ x | + C , for x ≠ 0 {\displaystyle \int \coth x\,dx=\ln |\sinh x|+C,{\text{ for }}x\neq 0} ∫ coth n ⁡ a x d x = − 1 a ( n − 1 ) coth n − 1 ⁡ a x + ∫ coth n − 2 ⁡ a x d x (for n ≠ 1 ) {\displaystyle \int \coth ^{n}ax\,dx=-{\frac {1}{a(n-1)}}\coth ^{n-1}ax+\int \coth ^{n-2}ax\,dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}} ∫ sech x d x = arctan ( sinh ⁡ x ) + C {\displaystyle \int \operatorname {sech} \,x\,dx=\arctan \,(\sinh x)+C} ∫ csch x d x = ln ⁡ | tanh ⁡ x 2 | + C , for x ≠ 0 {\displaystyle \int \operatorname {csch} \,x\,dx=\ln \left|\tanh {x \over 2}\right|+C,{\text{ for }}x\neq 0} التكاملات التي تحتوي على دالتي الجيب وجيب التمام الزائدية ∫ ( cosh ⁡ a x ) ( sinh ⁡ b x ) d x = 1 a 2 − b 2 ( a ( sinh ⁡ a x ) ( sinh ⁡ b x ) − b ( cosh ⁡ a x ) ( cosh ⁡ b x ) ) + C (for a 2 ≠ b 2 ) {\displaystyle \int (\cosh ax)(\sinh bx)\,dx={\frac {1}{a^{2}-b^{2}}}{\big (}a(\sinh ax)(\sinh bx)-b(\cosh ax)(\cosh bx){\big )}+C\qquad {\mbox{(for }}a^{2}\neq b^{2}{\mbox{)}}} ∫ cosh n ⁡ a x sinh m ⁡ a x d x = cosh n − 1 ⁡ a x a ( n − m ) sinh m − 1 ⁡ a x + n − 1 n − m ∫ cosh n − 2 ⁡ a x sinh m ⁡ a x d x (for m ≠ n ) {\displaystyle \int {\frac {\cosh ^{n}ax}{\sinh ^{m}ax}}dx={\frac {\cosh ^{n-1}ax}{a(n-m)\sinh ^{m-1}ax}}+{\frac {n-1}{n-m}}\int {\frac {\cosh ^{n-2}ax}{\sinh ^{m}ax}}dx\qquad {\mbox{(for }}m\neq n{\mbox{)}}} أيضًا: ∫ cosh n ⁡ a x sinh m ⁡ a x d x = − cosh n + 1 ⁡ a x a ( m − 1 ) sinh m − 1 ⁡ a x + n − m + 2 m − 1 ∫ cosh n ⁡ a x sinh m − 2 ⁡ a x d x (for m ≠ 1 ) {\displaystyle \int {\frac {\cosh ^{n}ax}{\sinh ^{m}ax}}dx=-{\frac {\cosh ^{n+1}ax}{a(m-1)\sinh ^{m-1}ax}}+{\frac {n-m+2}{m-1}}\int {\frac {\cosh ^{n}ax}{\sinh ^{m-2}ax}}dx\qquad {\mbox{(for }}m\neq 1{\mbox{)}}} ∫ cosh n ⁡ a x sinh m ⁡ a x d x = − cosh n − 1 ⁡ a x a ( m − 1 ) sinh m − 1 ⁡ a x + n − 1 m − 1 ∫ cosh n − 2 ⁡ a x sinh m − 2 ⁡ a x d x (for m ≠ 1 ) {\displaystyle \int {\frac {\cosh ^{n}ax}{\sinh ^{m}ax}}dx=-{\frac {\cosh ^{n-1}ax}{a(m-1)\sinh ^{m-1}ax}}+{\frac {n-1}{m-1}}\int {\frac {\cosh ^{n-2}ax}{\sinh ^{m-2}ax}}dx\qquad {\mbox{(for }}m\neq 1{\mbox{)}}} ∫ sinh m ⁡ a x cosh n ⁡ a x d x = sinh m − 1 ⁡ a x a ( m − n ) cosh n − 1 ⁡ a x + m − 1 n − m ∫ sinh m − 2 ⁡ a x cosh n ⁡ a x d x (for m ≠ n ) {\displaystyle \int {\frac {\sinh ^{m}ax}{\cosh ^{n}ax}}dx={\frac {\sinh ^{m-1}ax}{a(m-n)\cosh ^{n-1}ax}}+{\frac {m-1}{n-m}}\int {\frac {\sinh ^{m-2}ax}{\cosh ^{n}ax}}dx\qquad {\mbox{(for }}m\neq n{\mbox{)}}} ∫ sinh m ⁡ a x cosh n ⁡ a x d x = sinh m + 1 ⁡ a x a ( n − 1 ) cosh n − 1 ⁡ a x + m − n + 2 n − 1 ∫ sinh m ⁡ a x cosh n − 2 ⁡ a x d x (for n ≠ 1 ) {\displaystyle \int {\frac {\sinh ^{m}ax}{\cosh ^{n}ax}}dx={\frac {\sinh ^{m+1}ax}{a(n-1)\cosh ^{n-1}ax}}+{\frac {m-n+2}{n-1}}\int {\frac {\sinh ^{m}ax}{\cosh ^{n-2}ax}}dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}} ∫ sinh m ⁡ a x cosh n ⁡ a x d x = − sinh m − 1 ⁡ a x a ( n − 1 ) cosh n − 1 ⁡ a x + m − 1 n − 1 ∫ sinh m − 2 ⁡ a x cosh n − 2 ⁡ a x d x (for n ≠ 1 ) {\displaystyle \int {\frac {\sinh ^{m}ax}{\cosh ^{n}ax}}dx=-{\frac {\sinh ^{m-1}ax}{a(n-1)\cosh ^{n-1}ax}}+{\frac {m-1}{n-1}}\int {\frac {\sinh ^{m-2}ax}{\cosh ^{n-2}ax}}dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}} التكاملات التي تحتوي على الدوال الزائدية والمثلثية ∫ sinh ⁡ ( a x + b ) sin ⁡ ( c x + d ) d x = a a 2 + c 2 cosh ⁡ ( a x + b ) sin ⁡ ( c x + d ) − c a 2 + c 2 sinh ⁡ ( a x + b ) cos ⁡ ( c x + d ) + C {\displaystyle \int \sinh(ax+b)\sin(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\cosh(ax+b)\sin(cx+d)-{\frac {c}{a^{2}+c^{2}}}\sinh(ax+b)\cos(cx+d)+C} ∫ sinh ⁡ ( a x + b ) cos ⁡ ( c x + d ) d x = a a 2 + c 2 cosh ⁡ ( a x + b ) cos ⁡ ( c x + d ) + c a 2 + c 2 sinh ⁡ ( a x + b ) sin ⁡ ( c x + d ) + C {\displaystyle \int \sinh(ax+b)\cos(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\cosh(ax+b)\cos(cx+d)+{\frac {c}{a^{2}+c^{2}}}\sinh(ax+b)\sin(cx+d)+C} ∫ cosh ⁡ ( a x + b ) sin ⁡ ( c x + d ) d x = a a 2 + c 2 sinh ⁡ ( a x + b ) sin ⁡ ( c x + d ) − c a 2 + c 2 cosh ⁡ ( a x + b ) cos ⁡ ( c x + d ) + C {\displaystyle \int \cosh(ax+b)\sin(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\sinh(ax+b)\sin(cx+d)-{\frac {c}{a^{2}+c^{2}}}\cosh(ax+b)\cos(cx+d)+C} ∫ cosh ⁡ ( a x + b ) cos ⁡ ( c x + d ) d x = a a 2 + c 2 sinh ⁡ ( a x + b ) cos ⁡ ( c x + d ) + c a 2 + c 2 cosh ⁡ ( a x + b ) sin ⁡ ( c x + d ) + C {\displaystyle \int \cosh(ax+b)\cos(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\sinh(ax+b)\cos(cx+d)+{\frac {c}{a^{2}+c^{2}}}\cosh(ax+b)\sin(cx+d)+C}

التكاملات التي تحتوي على دالة الجيب الزائدية

∫ sinh ⁡ a x d x = 1 a cosh ⁡ a x + C {\displaystyle \int \sinh ax\,dx={\frac {1}{a}}\cosh ax+C\,} ∫ sinh 2 ⁡ a x d x = 1 4 a sinh ⁡ 2 a x − x 2 + C {\displaystyle \int \sinh ^{2}ax\,dx={\frac {1}{4a}}\sinh 2ax-{\frac {x}{2}}+C\,} ∫ sinh n ⁡ a x d x = 1 a n sinh n − 1 ⁡ a x cosh ⁡ a x − n − 1 n ∫ sinh n − 2 ⁡ a x d x ( n > 0 ) {\displaystyle \int \sinh ^{n}ax\,dx={\frac {1}{an}}\sinh ^{n-1}ax\cosh ax-{\frac {n-1}{n}}\int \sinh ^{n-2}ax\,dx\qquad {\mbox{(}}n>0{\mbox{)}}\,} ∫ sinh n ⁡ a x d x = 1 a ( n + 1 ) sinh n + 1 ⁡ a x cosh ⁡ a x − n + 2 n + 1 ∫ sinh n + 2 ⁡ a x d x ( n < 0 , n ≠ − 1 ) {\displaystyle \int \sinh ^{n}ax\,dx={\frac {1}{a(n+1)}}\sinh ^{n+1}ax\cosh ax-{\frac {n+2}{n+1}}\int \sinh ^{n+2}ax\,dx\qquad {\mbox{(}}n<0{\mbox{, }}n\neq -1{\mbox{)}}\,} ∫ d x sinh ⁡ a x = 1 a ln ⁡ | tanh ⁡ a x 2 | + C {\displaystyle \int {\frac {dx}{\sinh ax}}={\frac {1}{a}}\ln \left|\tanh {\frac {ax}{2}}\right|+C\,} ∫ d x sinh ⁡ a x = 1 a ln ⁡ | cosh ⁡ a x − 1 sinh ⁡ a x | + C {\displaystyle \int {\frac {dx}{\sinh ax}}={\frac {1}{a}}\ln \left|{\frac {\cosh ax-1}{\sinh ax}}\right|+C\,} ∫ d x sinh ⁡ a x = 1 a ln ⁡ | sinh ⁡ a x cosh ⁡ a x + 1 | + C {\displaystyle \int {\frac {dx}{\sinh ax}}={\frac {1}{a}}\ln \left|{\frac {\sinh ax}{\cosh ax+1}}\right|+C\,} ∫ d x sinh ⁡ a x = 1 a ln ⁡ | cosh ⁡ a x − 1 cosh ⁡ a x + 1 | + C {\displaystyle \int {\frac {dx}{\sinh ax}}={\frac {1}{a}}\ln \left|{\frac {\cosh ax-1}{\cosh ax+1}}\right|+C\,} ∫ d x sinh n ⁡ a x = − cosh ⁡ a x a ( n − 1 ) sinh n − 1 ⁡ a x − n − 2 n − 1 ∫ d x sinh n − 2 ⁡ a x ( n ≠ 1 ) {\displaystyle \int {\frac {dx}{\sinh ^{n}ax}}=-{\frac {\cosh ax}{a(n-1)\sinh ^{n-1}ax}}-{\frac {n-2}{n-1}}\int {\frac {dx}{\sinh ^{n-2}ax}}\qquad {\mbox{(}}n\neq 1{\mbox{)}}\,} ∫ x sinh ⁡ a x d x = 1 a x cosh ⁡ a x − 1 a 2 sinh ⁡ a x + C {\displaystyle \int x\sinh ax\,dx={\frac {1}{a}}x\cosh ax-{\frac {1}{a^{2}}}\sinh ax+C\,} ∫ sinh ⁡ ( a x + b ) sin ⁡ ( c x + d ) d x = a a 2 + c 2 cosh ⁡ ( a x + b ) sin ⁡ ( c x + d ) − c a 2 + c 2 sinh ⁡ ( a x + b ) cos ⁡ ( c x + d ) + C {\displaystyle \int \sinh(ax+b)\sin(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\cosh(ax+b)\sin(cx+d)-{\frac {c}{a^{2}+c^{2}}}\sinh(ax+b)\cos(cx+d)+C\,} ∫ sinh ⁡ ( a x + b ) cos ⁡ ( c x + d ) d x = a a 2 + c 2 cosh ⁡ ( a x + b ) cos ⁡ ( c x + d ) + c a 2 + c 2 sinh ⁡ ( a x + b ) sin ⁡ ( c x + d ) + C {\displaystyle \int \sinh(ax+b)\cos(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\cosh(ax+b)\cos(cx+d)+{\frac {c}{a^{2}+c^{2}}}\sinh(ax+b)\sin(cx+d)+C\,} ∫ sinh ⁡ a x sinh ⁡ b x d x = 1 a 2 − b 2 ( a sinh ⁡ b x cosh ⁡ a x − b cosh ⁡ b x sinh ⁡ a x ) + C ( a 2 ≠ b 2 ) {\displaystyle \int \sinh ax\sinh bx\,dx={\frac {1}{a^{2}-b^{2}}}(a\sinh bx\cosh ax-b\cosh bx\sinh ax)+C\qquad {\mbox{(}}a^{2}\neq b^{2}{\mbox{)}}\,}

التكاملات التي تحتوي على دالة جيب التمام الزائدية

∫ cosh ⁡ a x d x = 1 a sinh ⁡ a x + C {\displaystyle \int \cosh ax\,dx={\frac {1}{a}}\sinh ax+C\,} ∫ cosh 2 ⁡ a x d x = 1 4 a sinh ⁡ 2 a x + x 2 + C {\displaystyle \int \cosh ^{2}ax\,dx={\frac {1}{4a}}\sinh 2ax+{\frac {x}{2}}+C\,} ∫ d x cosh ⁡ a x = 2 a arctan ⁡ e a x + C {\displaystyle \int {\frac {dx}{\cosh ax}}={\frac {2}{a}}\arctan e^{ax}+C\,} ∫ cosh n ⁡ a x d x = 1 a n sinh ⁡ a x cosh n − 1 ⁡ a x + n − 1 n ∫ cosh n − 2 ⁡ a x d x ( n > 0 ) {\displaystyle \int \cosh ^{n}ax\,dx={\frac {1}{an}}\sinh ax\cosh ^{n-1}ax+{\frac {n-1}{n}}\int \cosh ^{n-2}ax\,dx\qquad {\mbox{(}}n>0{\mbox{)}}\,} ∫ cosh n ⁡ a x d x = − 1 a ( n + 1 ) sinh ⁡ a x cosh n + 1 ⁡ a x − n + 2 n + 1 ∫ cosh n + 2 ⁡ a x d x ( n < 0 , n ≠ − 1 ) {\displaystyle \int \cosh ^{n}ax\,dx=-{\frac {1}{a(n+1)}}\sinh ax\cosh ^{n+1}ax-{\frac {n+2}{n+1}}\int \cosh ^{n+2}ax\,dx\qquad {\mbox{(}}n<0{\mbox{, }}n\neq -1{\mbox{)}}\,} ∫ d x cosh n ⁡ a x = sinh ⁡ a x a ( n − 1 ) cosh n − 1 ⁡ a x + n − 2 n − 1 ∫ d x cosh n − 2 ⁡ a x ( n ≠ 1 ) {\displaystyle \int {\frac {dx}{\cosh ^{n}ax}}={\frac {\sinh ax}{a(n-1)\cosh ^{n-1}ax}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\cosh ^{n-2}ax}}\qquad {\mbox{(}}n\neq 1{\mbox{)}}\,} ∫ x cosh ⁡ a x d x = 1 a x sinh ⁡ a x − 1 a 2 cosh ⁡ a x + C {\displaystyle \int x\cosh ax\,dx={\frac {1}{a}}x\sinh ax-{\frac {1}{a^{2}}}\cosh ax+C\,} ∫ x 2 cosh ⁡ a x d x = − 2 x cosh ⁡ a x a 2 + ( x 2 a + 2 a 3 ) sinh ⁡ a x + C {\displaystyle \int x^{2}\cosh ax\,dx=-{\frac {2x\cosh ax}{a^{2}}}+\left({\frac {x^{2}}{a}}+{\frac {2}{a^{3}}}\right)\sinh ax+C\,} ∫ cosh ⁡ ( a x + b ) sin ⁡ ( c x + d ) d x = a a 2 + c 2 sinh ⁡ ( a x + b ) sin ⁡ ( c x + d ) − c a 2 + c 2 cosh ⁡ ( a x + b ) cos ⁡ ( c x + d ) + C {\displaystyle \int \cosh(ax+b)\sin(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\sinh(ax+b)\sin(cx+d)-{\frac {c}{a^{2}+c^{2}}}\cosh(ax+b)\cos(cx+d)+C\,} ∫ cosh ⁡ ( a x + b ) cos ⁡ ( c x + d ) d x = a a 2 + c 2 sinh ⁡ ( a x + b ) cos ⁡ ( c x + d ) + c a 2 + c 2 cosh ⁡ ( a x + b ) sin ⁡ ( c x + d ) + C {\displaystyle \int \cosh(ax+b)\cos(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\sinh(ax+b)\cos(cx+d)+{\frac {c}{a^{2}+c^{2}}}\cosh(ax+b)\sin(cx+d)+C\,} ∫ cosh ⁡ a x cosh ⁡ b x d x = 1 a 2 − b 2 ( a sinh ⁡ a x cosh ⁡ b x − b sinh ⁡ b x cosh ⁡ a x ) + C ( a 2 ≠ b 2 ) {\displaystyle \int \cosh ax\cosh bx\,dx={\frac {1}{a^{2}-b^{2}}}(a\sinh ax\cosh bx-b\sinh bx\cosh ax)+C\qquad {\mbox{(}}a^{2}\neq b^{2}{\mbox{)}}\,}

شرح مبسط

هذه قائمة تكاملات الدوال الزائدية.أخذا بالعلم أن a {\displaystyle a} عدد غير منعدم وأن C {\displaystyle C} هي ثابت التكامل.
التعليقات

لم يعلق احد حتى الآن .. كن اول من يعلق بالضغط هنا
ماتكتبه هنا سيظهر بالكامل .. لذا تجنب وضع بيانات ذات خصوصية بك وتجنب المشين من القول

captcha
اشتراكات مصبغة محافظة مبارك الكبير والأحمدي
هل أنت صاحب المنشأة؟ قم بتحديث صفحتك مجاناً