[ تعرٌف على ] فوتون
تم النشر اليوم [dadate] | فوتون
كيف ينشأ الفوتون
ينشأ الفوتون الضوئي في الذرة عندما يقفز أحد إلكترونات الذرة من مستوى طاقة علوي إلى مستوى طاقة سفلي، عندئذ يطلق الإلكترون فارق الطاقة على هيئة فوتونًا له تردد محدد.
ينشأ الفوتون الضوئي في الغلاف الذري الإلكتروني عندما تتأثر الذرة بفعل الحرارة مثلًا ويصبح أحد الإلكترونات في مستوى طاقة للذرة عال، ولا يستطيع الإلكترون البقاء في ذلك المستوى فسرعان ما يقفز إلى مستوى طاقة سفلي ويطلق فارق الطاقة في هيئة فوتون (شعاع ضوء) له تردد محدد أو ذي طول موجة محددة. فذرة الصوديوم على سبيل المثال تطلق عند الإثارة شعاعي ضوء تبلغ طول موجتهما 589 نانومتر و 590 نانومتر. ويقع هذان الشعاعان في منطقة اللون الأصفر للطيف، هذان الشعاعان هما فوتونان. وطيف الزئبق يصدر خطين من الفوتونات طول موجتيهما 579 و 577 نانومتر يقعان في منطقة الضوء الأصفر وخط ثالث ذو طول موجة 546 نانومتر وهذا يقع في منطقة الضوء الأخضر. وكل من هذه الفوتونات ينشأ عندما يقفز أحد الإلكترونات من مستوى للطاقة عال إلى مستوى منخفض. وتصل طاقة هذه الفوتونات بين 0.5 و 0.6 إلكترون فولت (أي أقل من 1 إلكترون فولت). وبصفة عامة فالفوتونات عبارة عن أشعة كهرومغناطيسية، بعضها يمكن رؤيته وينتمي إلى أشعة الضوء المرئي، والبعض الآخر يمكن أن يظهر في هيئة شعاع من الأشعة السينية ذات الطاقة العالية وبالتالي فلها درجة نفاذ عالية. وتنشأ الأشعة السينية عندما يقفز إلكترون من مستوى عال في الذرة إلى مكان شاغر في الذرة بالقرب من النواة. فيكون فرق طاقتي المستويين بالغًا ويصل إلى عدة مئات إلكترون فولت. وهناك نوع من الفوتونات ذو طاقة عالية جدًا تبلغ عدة ملايين إلكترون فولت مثل أشعة غاما. هذه الفوتونات لا تنشأ في الغلاف الذري للعناصر، وإنما تصدر من نواة الذرة.
تطور تاريخي
. الكتلة
يُعتقد حالياً أن الفوتون عديم الكتلة السكونية [ملاحظات 2] تمامًا (كتلته السكونية ليست قليلة جدًا بل هي لا شيء). في الواقع التعبير الشائع عن "c" بأنها سرعة تحرك الضوء هو خطأ، بل هي ثابت طبيعي يُمثل الحد الأقصى للسرعة التي يُمكن لأي جسم التحرك بها نظريًا في الزمكان. وهكذا فيمكن ان تمثل سرعة الأمواج في الزمكان (أمواج الجاذبية والجاذبية)، لكنها ليست سرعة الفوتونات في الفراغ تحديدًا.
الاعتراضات الأولية
تم التحقق من تنبؤات أينشتاين عام 1905 تجريبياً بطرق عدة خلال العقدين الأولين من القرن العشرين. قبل تجربة كومبتون (تأثير كومبتون) التي أثبتت أن الفوتونات حملت زخم حركة متناسب مع رقم الموجة (التردد) كان معظم الفيزيائيين مترددين في الاعتقاد بأن الإشعاع الكهرومغناطيسي قد يكون جسيمي، بدلاً من ذلك كان هناك اعتقاد منتشر بأن تكميم الطاقة ينتج عن بعض القيود الغير معروفة للمادة الماصة والباعثة للإشعاع. تغيرت الآراء بمرور الوقت ويعود التغير بشكل جزئي إلى تجارب مثل تأثير كومبتون، حيث كان من الصعوبة بشدة ألا يعزى التكميم إلى الضوء نفسه لتفسير النتائج الملاحظة. حتى بعد تأثير كومبتون، قام كل من نيلس بور وهندريك أنتوني كرامرز، وجون كلارك سلاتر بمحاولة أخيرة للحفاظ على نموذج ماكسويل للحقل الكهرومغناطيسي المستمر للضوء والتي أطلق عليها اسم نظرية BKS نسبة إلى (بوهر-كرامرز-سلاتر) (بالإنجليزية: Bohr-Kramers-Slater) [en]. لإدخال البيانات التي كانت متوفرة وقتها في الحساب، كان لابد من وضع فرضيتين جذريتين: يتم الحفاظ على الطاقة وزخم الحركة فقط في المرحلة الوسطى للتفاعل بين المادة والإشعاع وليس في العمليات الابتدائية كالامتصاص والانبعاث. هذا يسمح بالتوفيق بين الطاقة المتغيرة المتقطعة للنواة (القفز بين مستويات الطاقة) والتحرير المستمر للطاقة على هيئة اشعاع.
التخلي عن السببية: مثال، الإشعاعات التلقائية هي فقط اشعاعات ناجمة عن مجال مغناطيسي «افتراضي».
ومع ذلك، أظهرت تجارب كومبتون المدققة بأن حفظ الطاقة وزخم الحركة يتم بشكل جيد جداً في العمليات الابتدائية، وأن اهتزاز الالكترون وتوليد فوتون جديد في تأثير كومبتون يخضع للسبيبة خلال 10 بيكو ثانية. وفقا لذلك أعطى بور وزملاؤه نهاية مشرفة لنموذجهم قدر المستطاع. ومع ذلك ألهم فشل نموذج نظرية بوهر-كرامرز-سلاتر الفيزيائي فيرنر هايزنبيرغ في تطويره لميكانيكا المصفوفات. استمر القليل من الفيزيائيين في تطوير النماذج النصف تقليدية والتي تصف الإشعاع الكهرومغناطيسي بأنه غير مكمم وتخضع فيها المادة لقوانين ميكانيكا الكم. بالرغم من أن الأدلة على وجود الفوتونات من التجارب الفيزيائية والكيميائية كانت ساحقة، فإنها لن تؤخذ نتيجة مطلقة، نظراً لاعتمادها على التفاعل بين الضوء والمادة. ومع ذلك دحضت تمامًا كل النظريات النصف تقليدية المعقدة للمادة في السبعينيات والثمانينيات من القرن العشرين بالتجارب المرتبطة بالفوتون. ومنذ ذلك الحين تم الأخذ بعين الاعتبار نظرية أينشتاين بأن التكميم خاصية للضوء نفسه ليتم إثباتها.
ملاحظات
^ ينبغي فهم أنها "بغض النظر عن كمية الشدة" تشير إلى كميات شدتها تحت 1013 W/cm2 تقريبا والتي تبدأ عندها نقطة نظرية التشويش بالانهيار. المثير للاهتمام في موضوع الشدة، والذي يكون للضوء المرئي تقريبا فوق 1014 W/cm2، يتنبأ الوصف الكلاسيكي للموجة أن الطاقة المكتسبة بواسطة الإلكترونات، تدعى طاقة بنديرو الدافعة. انظر أيضًا . بالمقارنة، فإن ضوء الشمس ليس سوى 0.1 W/cm2. نسخة محفوظة 11 أكتوبر 2017 على موقع واي باك مشين. ^ أثبتت نظرية النسبية الخاصة لآينشتاين أن كتلة الأجسام يُمكن أن تزيد في حال تحركت بسرعة قريبة من سرعة الضوء. وعند 86% من سرعة الضوء تتضاعف الكتلة. ولذلك فقد وُلد مصطلحان للتعبير عن الكتلة هما: الكتلة السكونية، وهي كتلة الأجسام عندما تكون ثابتة. والكتلة الحركية، وهي كتلة الأجسام عندما تتحرك بما يقارب سرعة الضوء.
شرح مبسط
الفوتون[3] أو الجسيم الضوئي[3] في الفيزياء هو جسيم أولي والكم للضوء وجميع الأشكال الأخرى للإشعاع الكهرومغناطيسي، والحامل للقوة الكهرومغناطيسية. تسهل ملاحظة تأثيرات هذه القوة في كلا المستويين الميكروسكوبي والماكروسكوبي، بسبب انعدام الكتلة الساكنة للفوتون الذي يسمح بالتآثر والتفاعل في المسافات الطويلة. كما هو حال كل الجسيمات الأولية، تقدم ميكانيكا الكم حالياً أفضل تفسير للفوتونات، وللفوتونات خاصية ازدواجية الموجة والجسيم، مظهرة خصائص كلًا من الموجات والجسيمات حيث يمكن للفوتون الواحد الانكسار بواسطة العدسات والتداخل، ومن الممكن تصرفه كجسيم معطياً نتيجة محددة عند قياس وتحديد موضعه، ويختص بكونه معدوم كتلة السكون، ومعدوم الشحنة الكهربائية، بالإضافة لكونه يتنقل في الفراغ بسرعة الضوء.
التعليقات
لم يعلق احد حتى الآن .. كن اول من يعلق بالضغط هنا